r^2+1690r-80100=0

Simple and best practice solution for r^2+1690r-80100=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for r^2+1690r-80100=0 equation:



r^2+1690r-80100=0
a = 1; b = 1690; c = -80100;
Δ = b2-4ac
Δ = 16902-4·1·(-80100)
Δ = 3176500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3176500}=\sqrt{100*31765}=\sqrt{100}*\sqrt{31765}=10\sqrt{31765}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1690)-10\sqrt{31765}}{2*1}=\frac{-1690-10\sqrt{31765}}{2} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1690)+10\sqrt{31765}}{2*1}=\frac{-1690+10\sqrt{31765}}{2} $

See similar equations:

| 5-8(3-7x)=0 | | 3-8(5x+9)=4 | | 2-5(9x+6)=3 | | 2r/5r-7/3=2/3 | | 2w+10=0 | | -m+3-4m=-12 | | 3r-+6-r=10 | | 10y=9y+6 | | -3y-12-y=4y+10 | | 2x(3x+10)=25 | | -1/2x+2=−x+7 | | 3b+12=6b-18 | | 20+3.x=8.5-2 | | 5r+3-2r-5+3r=6+r | | 320+12y=368 | | 320+12y=S | | 38+6x-6=14x-8 | | 6X-32+3x+53=180 | | 8x÷7=31 | | 0.5x+16=x | | p^2-14p=5 | | (7-x)(4x+9)=0 | | -12+5+4x=-7+8 | | -7x-8=21 | | 98z=13 | | 11/7=k/10 | | x4=-16 | | 2.3=k-4.6 | | 6x-5+5=5(x-8) | | 2.9=k-11.4,k= | | 55=6+7x | | (2x-1)^2=12 |

Equations solver categories